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Abstract

Now by combining the finite element analysis and interval mathematics, a new, non-probabilistic, set-theoretical

models, that is interval analysis method is being developed in scientific and engineering communities to predict the

variability or uncertainty resulting from the unavoidable scatter in structural parameters and the external excitations as

an alternative to the classical probabilistic approaches. Interval analysis methods of uncertainty were developed for

modeling uncertain parameters of structures, in which bounds on the magnitude of uncertain parameters are only

required, not necessarily knowing the probabilistic distribution densities. Instead of conventional optimization studies,

where the minimum possible response is sought, here an uncertainty modeling is developed as an anti-optimization

problem of finding the least favorable response and the most favorable response under the constraints within the set-

theoretical description. In this study, we presented the non-probabilistic interval analysis method for the dynamical

response of structures with uncertain-but-bounded parameters. Under the condition of the interval vector, which

contains the uncertain-but-bounded parameters, determined from probabilistic statistical information or stochastic

sample test, through comparing between the non-probabilistic interval analysis method and the probabilistic approach

in the mathematical proof and the numerical examples, we can see that the region of the dynamical response of

structures with uncertain-but-bounded parameters obtained by the interval analysis method contains that produced by

the probabilistic approach. In other words, the width of the maximum or upper and minimum or lower bounds on the

dynamical responses yielded by the probabilistic approach is tighter than those produced by the interval analysis

method. This kind of results is coincident with the meaning of the probabilistic theory and interval mathematics.
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1. Introduction

The treatment of external excitations and structural parameters as uncertain variables has been the

subject of some scientists and engineers for many years (Ibrahim, 1987). The concept of uncertainty plays
an important role in the investigation of various science and engineering problems. In structural static and

dynamical analysis, the structural external excitations and parameters are subject to variation under the

influence of many factors such as fluctuations in the stiffness, damping and mass matrices caused by un-

certain variations in material properties, uncertainty in boundary conditions, and variations caused by

manufacturing and assembly techniques. The mechanical properties of structural systems are subject to a

certain degree of uncertainty because the structural properties of their finite elements are not measured or

evaluated exactly. The uncertainties in structural systems affect to a large extent their design and operating

performance. According to conventional structural analysis procedures, these external excitations and
structural parameters should be modeled as random variables or processed with a probability distribution

representing the distribution of the measured values. This modeling results in random response of structural

systems in question. In current literatures of structural response problems with random uncertainties, there

are three main ways (Li and Liao, 2001), they are: the stochastic finite element method, the Monte Carlo

simulation method and the orthogonal series expansion method. The Monte Carlo simulation method

(Astill et al., 1972; Wall and Bucher, 1987) is very efficient in this aspect of structural random analysis, but

it is quite time-consuming. The stochastic finite element method (Collins and Thompson, 1969; Zhu and

Wu, 1991; Kleiber and Hien, 1992; Liu et al., 1985) is very powerful in solving the random eigenvalue
problem, static analysis problem and structural stability problem, but the method is haunted by the no-

torious secular term in structural random dynamical response analysis. In the orthogonal series expansion

method (Sun, 1979; Ghanem and Spanos, 1990), the structural response may be expanded an orthogonal

series and the corresponding numerical characteristics are given as analytical solution form. Despite the

success of the above probabilistic analysis approaches, one may recognize that uncertainties in structures

can be modeled on the basis of alternative, non-probabilistic conceptual frameworks. In the frequently

encountered case where the sufficient knowledge about the external excitations and structural parameters

are absent for substantiation of the stochastic analysis, based on convex analysis and interval mathematics,
in recent studies by Ben-Haim and Elishakoff (1990), Elishakoff et al. (1994a,b), Qiu and Elishakoff (1998),

Qiu et al. (1995, 1996, 2001a,b), Chen and Yang (2000), Mullen and Muhanna (1999), and Pantelides and

Ganerli (2001), Ganzerli and Pantelides (2000), convex models and interval analysis methods of uncertainty

were developed for modeling the structural uncertain external excitations and parameters, in which bounds

on the magnitude of uncertain external excitations and parameters are only required, not necessarily

knowing the probabilistic distribution densities, following the general methodologies developed in the

monographs. It was assumed that the structural characteristics fall into the multidimensional ellipsoid or

solid ball, instead of conventional optimization studies, where the minimum possible response is sought,
here an uncertainty modeling is developed as an anti-optimization problem of finding the least favorable

response and the most favorable response under the constrains within the set-theoretical description.

Convex (ellipsoidal or interval) sets have been used for modeling uncertain phenomena in a wide range of

engineering applications. However, most formulations of convex models and interval analysis methods

were given in terms of the analytic form (Ben-Haim and Elishakoff, 1990); the analytic approaches are

not convenient for dealing with the uncertain problem in practical engineering. In the study, in virtue of

finite element analysis, the anti-optimum numerical methods––the numerical interval analysis method

for the dynamical response of structures with uncertain-but-bounded external excitations and parameters
is presented. By means of the mathematical proof and numerical examples, the numerical interval analy-

sis method and the probabilistic models of the structural dynamical response are critically contrasted.

In these comparisons, we can see that the region of the dynamical response of structures with uncertain-

but-bounded parameters calculated by the interval analysis method includes that obtained by the
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probabilistic approach. That is to say, the width of the maximum or upper and minimum or lower bounds

on the dynamical response produced by the interval analysis method is larger than those yielded by the

probabilistic approach.
2. Problem statement

Consider the equation of motion (Meirovotch, 1980; Weaver and Johnston, 1987) of a general dynamical

system with n degree of freedom in the following form:
M€xxðtÞ þ C _xxðtÞ þ KxðtÞ ¼ F ðtÞ ð1Þ

where M ¼ ðmijÞ, C ¼ ðcijÞ and K ¼ ðkijÞ are the mass, damping, and stiffness matrices; F ðtÞ ¼ ðfiðtÞÞ is the
external load vector. xðtÞ ¼ ðxiðtÞÞ, _xxðtÞ ¼ ð _xxiðtÞÞ and €xxðtÞ ¼ ð€xxiðtÞÞ are the displacement, velocity, and ac-

celeration vectors of the finite element assemblage. The matrix M ¼ ðmijÞ is the positive definite, C ¼ ðcijÞ
and K ¼ ðkijÞ are the positive semi-definite matrices.

By finite element analysis, we know that the mass matrix M ¼ ðmijÞ, the damping matrix C ¼ ðcijÞ, the
stiffness matrix K ¼ ðkijÞ and the external load vector F ðtÞ ¼ ðfiðtÞÞ depend on the structural parameter

vector a ¼ ðaiÞ and may be expressed as functions of the structural parameter vector a ¼ ðaiÞ, i.e.

M ¼ MðaÞ ¼ ðmijðaÞÞ; C ¼ CðaÞ ¼ ðcijðaÞÞ
K ¼ KðaÞ ¼ ðkijðaÞÞ; F ðtÞ ¼ F ða; tÞ ¼ ðfiða; tÞÞ

ð2Þ
in which a ¼ ðaiÞ is m-dimensional vector. Thus, Eq. (1) can be rewritten as
MðaÞ€xxða; tÞ þ CðaÞ _xxða; tÞ þ KðaÞxða; tÞ ¼ F ða; tÞ ð3Þ

Consider a realistic situation in which available information on the structural parameter vector a ¼ ðaiÞ

is not enough to justify an assumption on its probabilistic characteristics, we follow the thought of interval

mathematics or interval analysis (Moore, 1979; Alefeld and Herzberger, 1983) and assume that the

structural parameter vector a ¼ ðaiÞ belong to a bounded convex set––interval vector
a 2 aI ¼ ½a; a� ¼ ðaIi Þ; ai 2 aIi ¼ ½ai; ai�; i ¼ 1; 2; . . . ;m ð4Þ

where a ¼ ðaiÞ and a ¼ ðaiÞ are the upper and lower bounds of structural parameters a ¼ ðaiÞ, respectively.
From interval mathematics, we know that Eq. (3) describes a ‘‘box’’ with m order of dimension.

Suppose that the upper bound vector a ¼ ðaiÞ and the lower bound vector a ¼ ðaiÞ of the structural

parameter vector a ¼ ðaiÞ are given, the object is to find all the possible dynamical responses xðtÞ satisfying
the dynamical equation (3), where a is assumed all possible values inside the interval parameter vector aI .
This infinite number of dynamical responses constitutes a bounded response set
C ¼ xða; tÞ : MðaÞ€xxða; tÞ
n

þ CðaÞ _xxða; tÞ þ KðaÞxða; tÞ ¼ F ða; tÞ; a 2 aI
o

ð5Þ
In general, the set C has a very complicated region.

In interval mathematics (Moore, 1979; Alefeld and Herzberger, 1983), solving the dynamical response

problem (3) subject to (4) is synonymous to finding a multi-dimensional rectangle or interval vector con-

taining dynamical response set (5) for the interval structural parameter vector. In other words, we seek the

upper and lower bounds (or interval dynamical response vector) on the dynamical response set (5), i.e.
xIða; tÞ ¼ ½xða; tÞ; xða; tÞ� ¼ ðxIi ða; tÞÞ ð6aÞ

or component form
xIi ða; tÞ ¼ ½xiða; tÞ; xiða; tÞ�; i ¼ 1; 2; . . . ; n ð6bÞ
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where xða; tÞ ¼ ðxiða; tÞÞ and xða; tÞ ¼ ðxiða; tÞÞ, and
xða; tÞ ¼ max xða; tÞ : xða; tÞ 2 Rn;MðaÞ€xxða; tÞ
n

þ CðaÞ _xxða; tÞ þ KðaÞxða; tÞ ¼ F ða; tÞ; a 2 aI
o

ð7Þ
and
xða; tÞ ¼ min xða; tÞ : xða; tÞ 2 Rn;MðaÞ€xxða; tÞ
n

þ CðaÞ _xxða; tÞ þ KðaÞxða; tÞ ¼ F ða; tÞ; a 2 aI
o

ð8Þ
In the sequel, our aim is to determine the upper and lower bounds of the interval dynamical response.
3. Interval analysis method

In this section, we will calculate the interval dynamical response vector of structures with uncertain-

but-bounded parameters making use of interval mathematics.
By means of Eq. (4), we may define the nominal value vector or midpoint vector (Moore, 1979; Alefeld

and Herzberger, 1983) of the interval structural parameter vector as
ac ¼ ðaci Þ ¼ mðaIÞ ¼ ðaþ aÞ
2

; aci ¼ mðaIi Þ ¼
ðai þ aiÞ

2
; i ¼ 1; 2; . . . ;m ð9Þ
and the deviation amplitude vector or the uncertain radius vector of the interval structural parameter vector

as
Da ¼ ðDaiÞ ¼ radðaIÞ ¼ ða� aÞ
2

; Dai ¼ radðaIi Þ ¼
ðai � aiÞ

2
; i ¼ 1; 2; . . . ;m ð10Þ
Thus, based on interval mathematics, the interval structural parameter vector is decomposed into the

sum of the nominal value vector and the deviation vector, i.e.
aI ¼ ½a; a� ¼ ½ac � Da; ac þ Da� ¼ ½ac; ac� þ ½�Da;Da� ¼ ac þ DaI ¼ ac þ Da½�1; 1� ¼ ac þ DaeD ð11Þ

where a ¼ ac þ Da, a ¼ ac � Da, DaI ¼ ½�Da;Da�, eD ¼ ½�1; 1�.

In terms of the expression (11), the interval structural parameter vector may be written in the following

form:
a ¼ ac þ da; jdaj6Da ð12aÞ

or component form
ai ¼ aci þ dai; jdaij6Dai; i ¼ 1; 2; . . . ;m ð12bÞ

Using Taylor series the dynamical response xiða; tÞ, i ¼ 1; 2; . . . ; n about ac is developed as
xiða; tÞ ¼ xiðac þ d; tÞ ¼ xiðac; tÞ þ
Xm
j¼1

oxiðac; tÞ
oaj

daj ð13Þ
in which
daj 2 DaIj ¼ ½�Daj;Daj�; j ¼ 1; 2; . . . ;m ð14Þ
By making use of the interval extension in interval mathematics, from the expression (13), we can obtain

the interval extension of the dynamical response of structures
xIi ða; tÞ ¼ xiðac; tÞ þ
Xm
j¼1

oxiðac; tÞ
oaj

����
����DaIj ð15Þ
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After the interval operations, from the above equation, we have
xiða; tÞ ¼ xiðac; tÞ þ
Xm
j¼1

oxiðac; tÞ
oaj

����
����Daj; i ¼ 1; 2; . . . ; n ð16Þ
and
xiða; tÞ ¼ xiðac; tÞ �
Xm
j¼1

oxiðac; tÞ
oaj

����
����Daj; i ¼ 1; 2; . . . ; n ð17Þ
By Eqs. (16) and (17) we can determine the interval region of the dynamical response of structures with

uncertain-but-bounded parameters using the interval analysis method. Obviously, if the approximation of

Taylor series extension is omitted, according to the meaning of interval mathematics, the probability of the

dynamical response of structures with uncertain-but-bounded parameters belonging to the interval region

of the dynamical response is equal to unity.
4. Determining the first derivative of the dynamical response

Recall that the mass matrix MðaÞ, the damping matrix CðaÞ and the stiffness matrix KðaÞ are symmetric.

Assume that all elements in MðaÞ, CðaÞ, KðaÞ and all components in F ða; tÞ are continuously differentiable

with respect to the structural parameter a. The implicit function theorem thus guarantees that the dy-

namical response or solution xðtÞ ¼ xða; tÞ of Eq. (3) is also continuously differentiable.
Differentiating both sides of Eq. (3) with respect to a yields
MðaÞ o€xxða; tÞ
oa

þ CðaÞ o _xxða; tÞ
oa

þ KðaÞ oxða; tÞ
oa

¼ Rða; tÞ ð18Þ
where
Rða; tÞ ¼ oF ða; tÞ
oa

� oMðaÞ
oa

€xxða; tÞ � oCðaÞ
oa

_xxða; tÞ � oKðaÞ
oa

xða; tÞ ð19Þ
Substitution of a ¼ ac into Eq. (18) leads to the following equation:
MðacÞ o€xxða
c; tÞ

oa
þ CðacÞ o _xxða

c; tÞ
oa

þ KðacÞ oxða
c; tÞ

oa
¼ Rðac; tÞ ð20Þ
in which
Rðac; tÞ ¼ oF ðac; tÞ
oa

� oMðacÞ
oa

€xxðac; tÞ � oCðacÞ
oa

_xxðac; tÞ � oKðacÞ
oa

xðac; tÞ ð21Þ
In finite element analysis, the ith element mass matrix is denoted as MiðaÞ, the ith element damping

matrix as CiðaÞ, the ith element stiffness matrix as KiðaÞ, and the ith element nodal loads as fiða; tÞ. After

mass, damping, stiffness and nodal loads for all the nodes of the element have been transformed to global

directions, with the direct stiffness method, the global mass matrix MðaÞ, the global damping matrix CðaÞ,
the global stiffness matrix KðaÞ and nodal load vectors F ða; tÞ are obtained by summing the element mass

matrices, the element damping matrices, the element stiffness matrices and the nodal loads over all NE
elements in the structure, to obtain
MðaÞ ¼
XNE

MiðaÞ; CðaÞ ¼
XNE

CiðaÞ; KðaÞ ¼
XNE

KiðaÞ; F ða; tÞ ¼
XNE

fjða; tÞ ð22Þ

i¼1 i¼1 i¼1 j¼1
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Using Eq. (22) the first derivative required in Eq. (20) may be written as the sum of derivatives of element

matrices as
oMðaÞ
oa

¼ o

oa

XNE
i¼1

MiðaÞ
 !

¼
XNE
i¼1

oMiðaÞ
oa

;
oCðaÞ
oa

¼ o

oa

XNE
i¼1

CiðaÞ
 !

¼
XNE
i¼1

oCiðaÞ
oa

ð23aÞ

oKðaÞ
oa

¼ o

oa

XNE
i¼1

KiðaÞ
 !

¼
XNE
i¼1

oKiðaÞ
oa

;
oF ða; tÞ

oa
¼
XNE
j¼1

ofjða; tÞ
oa

ð23bÞ
The practicality of this computation follows from at least in two cases: (1) for each element mass matrix,

each element damping matrix, each element stiffness matrix and each nodal external load vector, the
matrices MiðaÞ, CiðaÞ, KiðaÞ and the vector fiða; tÞ will depend on only a small number of structural pa-

rameters that are associated with the given element and its nodes. Thus, only a few terms in the sum of

Eqs. (23) will be different from zero. (2) Evaluation of derivatives of the element bilinear forms in Eqs. (23)

requires calculation of only a moderate number of terms. There are important practical considerations in

adapting programmes for computation of derivatives that are required in structural sensitivity analysis.

Another practical consideration that should not be overlooked involves calculating derivatives of the

element mass matrices, the element mass matrices, the element damping matrices, the element stiffness

matrices and the element nodal load vectors that are implicitly generated. Many modern finite element
formulations carry out numerical integration to evaluate the element mass matrices, the element damping

matrices, the element stiffness matrices and the element nodal load vectors, rather than using closed from

expressions in terms of structural parameters. For implicitly generated the element mass matrices, the el-

ement damping matrices, the element stiffness matrices and the element nodal load vectors, the differen-

tiation can be carried through the sequence of calculations used to generate the element mass matrices,

the element damping matrices, the element stiffness matrices and the element nodal load vectors, thus

leading to implicit first derivative routines. An alternative approach is simply to perturb one structural

parameter at a time and use finite difference to approximate element matrix and component vector
derivative. For example
oMiðaÞ
oa


 Miðaþ daÞ �MiðaÞ
da

;
oCiðaÞ
oa


 Ciðaþ daÞ � CiðaÞ
da

ð24aÞ

oKiðaÞ
oa


 Kiðaþ daÞ � KiðaÞ
da

;
ofiða; tÞ

oa

 fiðaþ da; tÞ � fiða; tÞ

da
ð24bÞ
where da is a small perturbation in the structural parameter a.
5. Probabilistic approach

In this section, we will determine the interval dynamical response of structures with uncertain-but-

bounded parameters by probabilistic approach.

Assume that the m-dimensional uncertain structural parameter vector a ¼ ðaiÞ is random variable

(Elishakoff, 1983). Thus, the dynamical response xða; tÞ is also random. If we denote the random structural
parameter vector�s expected value, or the mean value (MV), as
EðaÞ ¼ ðEðaiÞÞ ¼ aE ¼ ðaEi Þ ð25Þ
then Eq. (13) can be interpreted as a Taylor�s series expansion of the random dynamical response about the

mean value xiðaE; tÞ, i ¼ 1; 2; . . . ; n of the random structural parameter vector a ¼ ðaiÞ.



Z. Qiu, X. Wang / International Journal of Solids and Structures 40 (2003) 5423–5439 5429
For the random structural parameter vector a ¼ ðaiÞ, the variance is defined by
VarðaÞ ¼ ðVarðaiÞÞ ¼ DðaÞ ¼ ðDðaiÞÞ ð26Þ
Then the standard deviation of the random structural parameter vector a ¼ ðaiÞ is defined as
rðaÞ ¼ ðrðaiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðaÞ

p
¼

ffiffiffiffiffiffiffiffiffiffi
DðaÞ

p
¼ ðVarðaiÞÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffi
DðaiÞ

p
Þ ð27Þ
The mean value or expected value of the dynamical response is obtained by taking the expected value of
both side of Eq. (13). In so doing, it follows that
Efxiða; tÞg ¼ EfxiðaE; tÞg þ E
Xm
j¼1

oxiðaE; tÞ
oaj

daj

 !
¼ xiðaE; tÞ þ

Xm
j¼1

oxiðaE; tÞ
oaj

Eðaj � aEj Þ;

i ¼ 1; 2; . . . ; n

ð28Þ
and nothing that the term EðdajÞ ¼ Eðaj � aEj Þ is zero, we obtain
Efxiða; tÞg ¼ xiðaE; tÞ; i ¼ 1; 2; . . . ; n ð29Þ
For the variance of the dynamical response xiða; tÞ we obtain in a similar way as follows:
Varðxiða; tÞÞ ¼ Dðxiða; tÞÞ ¼
Xm
j¼1

oxiðaE; tÞ
oaj

	 
2

DðajÞ þ
Xm
k¼1

Xm
l¼1

oxiðaE; tÞ
oak

oxiðaE; tÞ
oal

Covðak; alÞ ð30Þ
where Covðak; alÞ is the covariance of the random structural parameter variables and is defined as
Covðxk; xlÞ ¼ E ðxkða; tÞ½ � E½xkða; tÞ�Þðxlða; tÞ � E½xlða; tÞ�Þ� ð31Þ
When the random structural parameter variables are independent, the variance of the dynamical re-

sponse can be reduced as
Varðxiða; tÞÞ ¼ Dðxiða; tÞÞ ¼
Xm
j¼1

oxiðaE; tÞ
oaj

	 
2

DðajÞ ¼
Xm
j¼1

oxiðaE; tÞ
oaj

rðajÞ
	 
2

¼
Xm
j¼1

oxiðaE; tÞ
oaj

rj

	 
2

ð32Þ
Obviously, the standard deviation of the dynamical response xiða; tÞ is
rðxiða; tÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðxiða; tÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

oxiðaE; tÞ
oaj

rj

	 
2

vuut ð33Þ
Thus, let k be a positive integer, the probabilistic region of k times standard deviations of its mean value of

the random dynamical response is
yIi ¼ ½y
i
ða; tÞ; yiða; tÞ� ¼ ½xiðaE; tÞ � krðxiða; tÞ; xiðaE; tÞ þ krðxiða; tÞ�; i ¼ 1; 2; . . . ; n ð34Þ
where the probabilistic upper bound is
yiða; tÞ ¼ xiðaE; tÞ þ krðxiða; tÞÞ ¼ xiðaE; tÞ þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

oxiðaE; tÞ
oaj

rj

	 
2

vuut ; i ¼ 1; 2; . . . ; n ð35Þ
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and the probabilistic lower bound is
y
i
ða; tÞ ¼ xiðaE; tÞ � krðxiða; tÞÞ ¼ xiðaE; tÞ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

oxiðaE; tÞ
oaj

rj

	 
2

vuut ; i ¼ 1; 2; . . . ; n ð36Þ
By Eqs. (35) and (36) we can obtain the probabilistic region of the dynamical response of structures with

uncertain-but-bounded parameters using the probabilistic approach. According to the Tchebycheff�s in-
equality, we know that the probability of the random variable with finite variance falling within k standard

deviations of its mean is at least 1� 1=k2, and the bound is independent of the distribution of the random

variable, provided it has a finite variance. For sufficient large k, in the numerical example, when using the

probabilistic approach to estimate the upper and lower bound of structural response, the value of k times

standard deviations in Eqs. (35) and (36) will result in almost a certain event.
6. Comparison of non-probabilistic interval analysis method and probabilistic approach

For convenience of comparison, we first prove the following inequality.

For any real m-tuples ai P 0; 1; 2; . . . ;m, then the following inequality holds:
Xm
i¼1

ai P

ffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

a2i

s
ð37Þ
Proof. Adding
Pm

i¼1 a
2
i to the both sides of the following inequality:
2
Xm
i;j¼1
i 6¼j

aiaj P 0 ð38Þ
to arrive at
Xm
i¼1

a2i þ 2
Xm
i;j¼1
i 6¼j

aiaj P
Xm
i¼1

a2i ð39Þ
arranging the above inequality to produce
Xm
i¼1

ai

 !2

P
Xm
i¼1

a2i ð40Þ
taking the square of the inequality to yield
Xm
i¼1

ai P

ffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

a2i

s
� ð41Þ
Assume that we obtain the interval regions of the uncertain-but-bounded structural parameters based on

the probabilistic statistical information or stochastic sample test and they can be expressed as the following

interval vector form:
aI ¼ ½a; a� ¼ ðaIi Þ ¼ ½aE � kr; aE þ kr� ð42Þ

and its component form
aIi ¼ ½ai; ai� ¼ aEi
�

� kri; aEi þ kri

�
; i ¼ 1; 2; . . . ;m ð43Þ
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where a ¼ ðaiÞ, ai ¼ aEi � kri, i ¼ 1; 2; . . . ;m, and a ¼ ðaiÞ, ai ¼ aEi þ kri, i ¼ 1; 2; . . . ;m, are respectively the

upper bound vector and the lower bound vector of the interval vector aI ¼ ½a; a� ¼ ðaIi Þ, the vectors

aE ¼ ðaEi Þ and r ¼ rðaÞ ¼ ðrðaiÞÞ ¼ ðriÞ are respectively the mean value and the standard deviation of the

uncertain structural parameter vector a ¼ ðaiÞ, and k is a positive integer. According to the Tchebycheff�s
inequality in probabilistic theory, we know that the probability of the uncertain structural parameter

a ¼ ðaiÞ with finite variance D ¼ DðaÞ ¼ ðDiÞ ¼ ðDðaiÞÞ falling within k standard deviations

r ¼
ffiffiffiffi
D

p
¼ ðriÞ ¼ ð

ffiffiffiffiffi
Di

p
Þ of its mathematical expectation is at least 1� 1=k2, and the bound is independent

of the distribution of the uncertain structural parameter, provided it has a finite variance. Obviously, from

(42) and (43), the nominal value vector or midpoint vector of the uncertain structural parameter vector

a ¼ ðaiÞ can be calculated as follows:
ac ¼ ðaci Þ ¼ mðaIÞ ¼ aE; aci ¼ mðaIi Þ ¼ aEi ; i ¼ 1; 2; . . . ;m ð44Þ
and the deviation amplitude vector or the uncertain radius vector of the uncertain structural parameter

vector a ¼ ðaiÞ can be determined
Da ¼ ðDaiÞ ¼ radðaIÞ ¼ kr; Dai ¼ radðaIi Þ ¼ kri; i ¼ 1; 2; . . . ;m ð45Þ
Thus, in terms of the expressions (44) and (45), the interval region (16) and (17) of the structural dynamical
response can be rewritten as
xiða; tÞ ¼ xiðaE; tÞ þ
Xm
j¼1

oxiðaE; tÞ
oaj

����
����krj; i ¼ 1; 2; . . . ; n ð46Þ
and
xiða; tÞ ¼ xiðaE; tÞ �
Xm
j¼1

oxiðaE; tÞ
oaj

����
����krj; i ¼ 1; 2; . . . ; n ð47Þ
For the sum expression
Xm
j¼1

oxiðaE; tÞ
oaj

����
����krj;
by means of the inequality (41), we have that
Xm
j¼1

oxiðaE; tÞ
oaj

krj

����
����P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

oxiðaE; tÞ
oaj

krj

	 
2
�����

�����
vuut ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

oxiðaE; tÞ
oaj

rj

	 
2

vuut ð48Þ
Since the inequality (48), from Eqs. (35), (36), (46) and (47), we can deduce
xiða; tÞ6 y
i
ða; tÞ6 yiða; tÞ6 xiða; tÞ ð49Þ
The expression (49) means that under the condition of the interval vector of the uncertain parame-

ters determined from the probabilistic information, the width of the dynamical response obtained by

the interval analysis method is larger than that by the probabilistic approach for structures with uncertain-

but-bounded structural parameters. Namely the lower bounds within interval analysis method are smaller

than those predicted by the probabilistic approach, and the upper bounds furnished by the interval analysis

method are larger than those yielded by the probabilistic approach. This is just the results which we hope,

since according to the definition of probabilistic theory and interval mathematics, the region by determined
by the interval analysis method should contain that predicted by the probabilistic approach.
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7. Numerical examples

Example I. Fig. 1 shows a cantilever beam with 11 nodes, 10 elements and the length of 1 m. The cross-

sectional area of the beam is A ¼ 2:0E� 4 m2. The moment of inertia of the cross-section of the beam is
Iz ¼ 2:0E� 8 m4. The Poisson�s ratio is l ¼ 0:3. Now there is a harmonic sinusoidal excitation

P ðtÞ ¼ �p sinð1600ptÞN acting on the vertical direction of the node 3 with the initial condition _xxð0Þ ¼ 0 and

xð0Þ ¼ 0. Assume that, because of uncertainties, the Young�s modulus, the mass density and the harmonic

sinusoidal excitation amplitude of the cantilever beam are uncertain-but-bounded parameters, and their

interval numbers are: EI ¼ ½194� 109; 206� 109� N/m2, qI ¼ ½97; 103� kg/m3 and pI ¼ ½97; 103� N. We also

assume that the Young�s modulus, the mass density and the harmonic sinusoidal excitation amplitude of

the cantilever beam have all normal or Gaussian distributions in their interval numbers with the mean

values (MV) lE ¼ 200� 109 N/m2, lq ¼ 7800 kg/m3, lp ¼ 100 N and the standard variances rE ¼ 6� 109

N/m2, rq ¼ 234 kg/m3, rp ¼ 3 N. The response regions of the fifth node in vertical direction on the can-

tilever beam are, respectively, computed by the interval analysis method and the probabilistic approach,

and plotted in the Figs. 2 and 3. The comparison of the response region curves of the cantilever beam by the

interval analysis method and the probabilistic approach is also presented in Fig. 4.

Example II. Considering a plane truss subjected to a harmonic sinusoidal excitation P ðtÞ ¼ � sinð20ptÞN
with the initial condition _xxð0Þ ¼ 0 and xð0Þ ¼ 0, as shown in Fig. 5. The truss is partitioned into 6 nodes and

8 elements. Assume that the cross-sectional area of elements , , and are A1 ¼ A2 ¼ A3 ¼ A4 ¼
Fig. 1. A cantilever beam.
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Fig. 2. Response region curves of the cantilever beam by the interval analysis method.
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Fig. 3. Response region curves of the cantilever beam by the probabilistic approach.
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Fig. 4. Comparison of the response region curves of the cantilever beam by the interval analysis method and the probabilistic ap-

proach.
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1:0� 10�4 m2, those for elements , , and are A5 ¼ A6 ¼ A7 ¼ A8 ¼ 1:2� 10�4 m2. The Poisson�s
ratio is l ¼ 0:3. We assume that the Young�s modulus, the mass density and the harmonic sinusoidal ex-

citation amplitude of the plane truss are uncertain-but-bounded parameters, and their interval numbers are:

EI ¼ ½190� 109; 210� 109� N/m2, qI ¼ ½7410; 8190� kg/m3 and pI ¼ ½95; 105� N. We also assume that the

Young�s modulus, the mass density and the harmonic sinusoidal excitation amplitude of the plane truss



Fig. 5. A plane truss.

0 0.02 0.04 0.06 0.08 0.1
-3

-2

-1

0

1

2

3
x 10

-5

Time(s)

Y
 D

is
pl

ac
em

en
t o

f N
od

e 
3

Mean value
Probabilistic lower bound
Probabilistic upper bound

(m)

Fig. 6. Response region curves of the truss by the interval analysis method.
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have all normal or Gaussian distributions in their interval numbers with the mean values (MV)

lE ¼ 200� 109 N/m2, lq ¼ 7800 kg/m3, lp ¼ 100 N and the standard variances rE ¼ 10� 109 N/m2,

rq ¼ 390 kg/m3, rp ¼ 5 N. The response regions of the third node in vertical direction on the plane truss

are, respectively, computed by the interval analysis method and the probabilistic approach, and plotted in

the Figs. 6 and 7. The comparison of the response region curves of the plane truss by the interval analysis

method and the probabilistic approach is also presented in Fig. 8.

From the above numerical examples, we can see that the region of the dynamical response of structures

with uncertain-but-bounded parameters obtained by the interval analysis method contains that produced
by the probabilistic approach. In other words, it is seen that the present interval analysis method yields

larger bounds; namely, the lower bounds within the present interval analysis method are smaller than those

predicted by the probabilistic approach. Likewise, the upper bounds furnished by the present interval

analysis method are larger than those yielded by the probabilistic approach. This kind of results is coin-

cident with the meaning of the probabilistic theory and interval mathematics.
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Fig. 7. Response region curves of the truss by the probabilistic approach.
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Fig. 8. Comparison of the response region curves of the truss by the interval analysis method and the probabilistic approach.
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8. Conclusions

In this study we considered the dynamical response of structures with uncertain parameters. Instead of

assuming extensive knowledge of the probabilistic characteristics of the uncertain parameters, we adopted a

non-probabilistic, set-theoretic approach to model uncertainty in the structural parameters. In particular,

we assumed that the structural parameters are uncertain-but-bounded. By finite element analysis and in-

terval mathematics, the non-probabilistic interval analysis method for structural dynamical response is

developed. Under the condition of the box or interval vector, which contains the uncertain-but-bounded
parameters, determined from the probabilistic statistical information or stochastic sample test, we can also



5436 Z. Qiu, X. Wang / International Journal of Solids and Structures 40 (2003) 5423–5439
show that the width of the upper and lower bounds on the structural dynamical response yielded by the

probabilistic approach is tighter than those produced by the non-probabilistic interval analysis method in

the mathematical proof and the numerical examples. This kind of results is coincident with the meaning of

the probabilistic theory and interval mathematics.
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Appendix A. Determination of interval parameters based on the probabilistic statistical information

In some cases, we can obtain probabilistic statistical properties of the uncertain variables by measure-

ments or past experience. In these cases, on the one hand, the uncertain variable should be treated as

random field, on the other hand, we can determine the interval region in which the uncertain variable is

varying based on these probabilistic statistical information. Before discussing some important theoretical

results, we will introduce two characteristics associated with an uncertain distribution. Generally, a char-

acteristic associated with an uncertain distribution is called a parameter. A parameter is defined to be a

numerical value associated with a theoretical uncertain distribution. The two parameter we consider here
are the mean value and the variance (Elishakoff, 1983; Robert et al., 1975), the former being a measure of

location and the latter a measure of variation of the uncertain random variable. Since the theoretical

uncertain probability distribution gives a complete description of the corresponding uncertain random

variable, we will call the two parameters the mean value and the variance of the random variable or

equivalently, of the probability distribution. The two parameters of a probability distribution, be it discrete

or continuous, will be denoted by letters l and D.
Suppose a random variable X can take on the values of a finite discrete set fx1; x2; . . . ; xng according to

the probability function f ðxÞ. The mean value, denoted by l, of the discrete random variable is defined by
l ¼ EðX Þ ¼
Xn
i¼1

xif ðxiÞ ðA:1Þ
It should be noted the mean value in the above expression is the usual weighted arithmetic average of

x1; x2; . . . ; xn. The probability function in most cases is theoretical, which is not known in general. We also

say the mean value is the mathematical expectation or the expected valued of the discrete random variable

X .
The second parameter of interest is the variance of the discrete random variable X , denoted by D. The

variance of the discrete random variable X is defined by
D ¼ E½ðX � lÞ2� ¼
Xn
i¼1

ðxi � lÞ2f ðxiÞ ðA:2Þ
The variance of the discrete random variable X is simply the weighted average of

ðx1 � lÞ2; ðx2 � lÞ2; . . . ; ðxn � lÞ2, with respect to the weights f ðx1Þ; f ðx2Þ; . . . ; f ðxnÞ. Obviously, the variance

of the discrete random variable X is also the expected value of ðX � lÞ2.
The mean value l and the variance D of a continuous random variable X are given by
l ¼ EðX Þ ¼
Z 1

�1
xf ðxÞdx ðA:3Þ
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and
D ¼ E½ðX � lÞ2� ¼
Z 1

�1
ðx� lÞ2f ðxÞdx ðA:4Þ
The positive square root of the variance D is called the standard deviation of the uncertain random X and is
denoted by r ¼

ffiffiffiffi
D

p
.

The parameters l and D are referred to as the population mean value and the variance, respectively.

They are generally unknown and information about them, in the form of inferences, is obtained by con-

sidering a sample from the appropriate population. This leads to the sample analogues of l and D, which
are called the sample mean value and the sample variance.

The sample mean value, which is the most important and often used in statistics, is defined by the sum of

all the sample values divided by the number of observations in the sample and is denoted by
ls ¼
Xn
i¼1

xi
n

ðA:5Þ
where ls is the mean value of n values and xi is any given value in the sample. It is an estimate of the value of

the mean value of the population from which the sample was drawn. The sample mean-value is used as a

measure of location is one that indicates where the center of the data is located.

Having determined the location of the data as expressed by statistics such as the mean value, the next

thing to be considered is how the data are spread about these mean values. The most popular method of

reporting variability is by use of the sample variance defined by
Ds ¼
1

n� 1

Xn
i¼1

ðXi � lsÞ
2 ¼ 1

n� 1

Xn
i¼1

X 2
i

"
� nl2

s

#
ðA:6Þ
The sample variance is the sum of the squares of the deviations of the data points from the mean value of

the sample divided by n� 1.

The standard deviation of a sample, denoted by rs, is defined to be the positive square root of the sample

variance, that is rs ¼
ffiffiffiffiffi
Ds

p
.

Let X be a random variable with a finite variance r2
X and the mean value EðX Þ. Then the following

probabilistic inequality is valid, provided k is a positive integer
P ðjX � EðX ÞjP krX Þ6
1

k2
ðA:7Þ
This inequality, named after Tchebycheff�s inequality, signifies that
P ðjX � EðX Þj < krX Þ > 1� 1

k2
ðA:8Þ
From the Tchebycheff�s inequality, we know that the probability of the random variable X with finite

variance r2
X falling within k standard deviations of its mean is at least 1� 1=k2. For example, for k ¼ 2 we

obtain
P ðEðX Þ � 2rX < X < EðX Þ þ 2rX Þ > 3
4
¼ 0:75 ðA:9Þ
for any random variable X with finite variance. For k ¼ 3
P ðEðX Þ � 3rX < X < EðX Þ þ 3rX Þ > 8
9
¼ 0:8889 ðA:10Þ
For any random variable X with finite variance, the latter inequality signifies that the probability of X
falling within three standard deviations of its mean value is at least 0.8889. This bound is independent of the
distribution of X , provided that it has a finite variance r2

X . Obviously, as k increases, the probability of the
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uncertain variable falling within the interval ½EðX Þ � krX ;EðX Þ þ krX � approach unity, that is to say

X 2 ½EðX Þ � krX ;EðX Þ þ krX � is almost a certain event as k increases. For example, when k ¼ 10 we have
P ðEðX Þ � 10rX < X < EðX Þ þ 10rX Þ > 99
100

¼ 0:99 ðA:11Þ
for any random variable X with finite variance r2
X .

Thus, if given the mean value EðX Þ and the finite variance r2
X of an uncertain variable X , we may take

½EðX Þ � krX ;EðX Þ þ krX �, where k is sufficent large, as the interval number or vector in which the uncertain

variable X is varying.
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