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Abstract

Now by combining the finite element analysis and interval mathematics, a new, non-probabilistic, set-theoretical
models, that is interval analysis method is being developed in scientific and engineering communities to predict the
variability or uncertainty resulting from the unavoidable scatter in structural parameters and the external excitations as
an alternative to the classical probabilistic approaches. Interval analysis methods of uncertainty were developed for
modeling uncertain parameters of structures, in which bounds on the magnitude of uncertain parameters are only
required, not necessarily knowing the probabilistic distribution densities. Instead of conventional optimization studies,
where the minimum possible response is sought, here an uncertainty modeling is developed as an anti-optimization
problem of finding the least favorable response and the most favorable response under the constraints within the set-
theoretical description. In this study, we presented the non-probabilistic interval analysis method for the dynamical
response of structures with uncertain-but-bounded parameters. Under the condition of the interval vector, which
contains the uncertain-but-bounded parameters, determined from probabilistic statistical information or stochastic
sample test, through comparing between the non-probabilistic interval analysis method and the probabilistic approach
in the mathematical proof and the numerical examples, we can see that the region of the dynamical response of
structures with uncertain-but-bounded parameters obtained by the interval analysis method contains that produced by
the probabilistic approach. In other words, the width of the maximum or upper and minimum or lower bounds on the
dynamical responses yielded by the probabilistic approach is tighter than those produced by the interval analysis
method. This kind of results is coincident with the meaning of the probabilistic theory and interval mathematics.
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1. Introduction

The treatment of external excitations and structural parameters as uncertain variables has been the
subject of some scientists and engineers for many years (Ibrahim, 1987). The concept of uncertainty plays
an important role in the investigation of various science and engineering problems. In structural static and
dynamical analysis, the structural external excitations and parameters are subject to variation under the
influence of many factors such as fluctuations in the stiffness, damping and mass matrices caused by un-
certain variations in material properties, uncertainty in boundary conditions, and variations caused by
manufacturing and assembly techniques. The mechanical properties of structural systems are subject to a
certain degree of uncertainty because the structural properties of their finite elements are not measured or
evaluated exactly. The uncertainties in structural systems affect to a large extent their design and operating
performance. According to conventional structural analysis procedures, these external excitations and
structural parameters should be modeled as random variables or processed with a probability distribution
representing the distribution of the measured values. This modeling results in random response of structural
systems in question. In current literatures of structural response problems with random uncertainties, there
are three main ways (Li and Liao, 2001), they are: the stochastic finite element method, the Monte Carlo
simulation method and the orthogonal series expansion method. The Monte Carlo simulation method
(Astill et al., 1972; Wall and Bucher, 1987) is very efficient in this aspect of structural random analysis, but
it is quite time-consuming. The stochastic finite element method (Collins and Thompson, 1969; Zhu and
Wu, 1991; Kleiber and Hien, 1992; Liu et al., 1985) is very powerful in solving the random eigenvalue
problem, static analysis problem and structural stability problem, but the method is haunted by the no-
torious secular term in structural random dynamical response analysis. In the orthogonal series expansion
method (Sun, 1979; Ghanem and Spanos, 1990), the structural response may be expanded an orthogonal
series and the corresponding numerical characteristics are given as analytical solution form. Despite the
success of the above probabilistic analysis approaches, one may recognize that uncertainties in structures
can be modeled on the basis of alternative, non-probabilistic conceptual frameworks. In the frequently
encountered case where the sufficient knowledge about the external excitations and structural parameters
are absent for substantiation of the stochastic analysis, based on convex analysis and interval mathematics,
in recent studies by Ben-Haim and Elishakoff (1990), Elishakoff et al. (1994a,b), Qiu and Elishakoff (1998),
Qiu et al. (1995, 1996, 2001a,b), Chen and Yang (2000), Mullen and Muhanna (1999), and Pantelides and
Ganerli (2001), Ganzerli and Pantelides (2000), convex models and interval analysis methods of uncertainty
were developed for modeling the structural uncertain external excitations and parameters, in which bounds
on the magnitude of uncertain external excitations and parameters are only required, not necessarily
knowing the probabilistic distribution densities, following the general methodologies developed in the
monographs. It was assumed that the structural characteristics fall into the multidimensional ellipsoid or
solid ball, instead of conventional optimization studies, where the minimum possible response is sought,
here an uncertainty modeling is developed as an anti-optimization problem of finding the least favorable
response and the most favorable response under the constrains within the set-theoretical description.
Convex (ellipsoidal or interval) sets have been used for modeling uncertain phenomena in a wide range of
engineering applications. However, most formulations of convex models and interval analysis methods
were given in terms of the analytic form (Ben-Haim and Elishakoff, 1990); the analytic approaches are
not convenient for dealing with the uncertain problem in practical engineering. In the study, in virtue of
finite element analysis, the anti-optimum numerical methods—the numerical interval analysis method
for the dynamical response of structures with uncertain-but-bounded external excitations and parameters
is presented. By means of the mathematical proof and numerical examples, the numerical interval analy-
sis method and the probabilistic models of the structural dynamical response are critically contrasted.
In these comparisons, we can see that the region of the dynamical response of structures with uncertain-
but-bounded parameters calculated by the interval analysis method includes that obtained by the
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probabilistic approach. That is to say, the width of the maximum or upper and minimum or lower bounds
on the dynamical response produced by the interval analysis method is larger than those yielded by the
probabilistic approach.

2. Problem statement

Consider the equation of motion (Meirovotch, 1980; Weaver and Johnston, 1987) of a general dynamical
system with n degree of freedom in the following form:

Mi(t) + Cx(t) + Kx(t) = F(1) (1)

where M = (my;), C = (¢;;) and K = (k;;) are the mass, damping, and stiffness matrices; F(¢) = (fi(¢)) is the
external load vector. x(¢) = (x;(¢)), x(¢) = (x;(¢)) and %(¢) = (¥:(¢)) are the displacement, velocity, and ac-
celeration vectors of the finite element assemblage. The matrix M = (m;;) is the positive definite, C = (c;))
and K = (k;;) are the positive semi-definite matrices.

By finite element analysis, we know that the mass matrix M = (m;;), the damping matrix C = (c;), the
stiffness matrix K = (k;;) and the external load vector F(t) = (fi(t)) depend on the structural parameter
vector a = (a;) and may be expressed as functions of the structural parameter vector a = (;), i.e.

M = M(a) = (my(a)),  C=C(a) = (c;(a))
K =K(a) = (ky(a)),  F(1) = F(a,1) = (fi(a,1))
in which a = (a;) is m-dimensional vector. Thus, Eq. (1) can be rewritten as
M(a)i(a,t) + C(a)x(a,t) + K(a)x(a,t) = F(a,t) (3)
Consider a realistic situation in which available information on the structural parameter vector a = (a;)
is not enough to justify an assumption on its probabilistic characteristics, we follow the thought of interval

mathematics or interval analysis (Moore, 1979; Alefeld and Herzberger, 1983) and assume that the
structural parameter vector a = (a;) belong to a bounded convex set—interval vector

2)

aegl:[g,ﬁ]z(af.), aiEafz[gi,ﬁi], i=1,2,....m (4)

where @ = (@;) and a = (a;) are the upper and lower bounds of structural parameters a = (g;), respectively.
From interval mathematics, we know that Eq. (3) describes a “box” with m order of dimension.

Suppose that the upper bound vector @ = (@;) and the lower bound vector a = (g;) of the structural
parameter vector a = (g;) are given, the object is to find all the possible dynamical responses x(¢) satisfying
the dynamical equation (3), where a is assumed all possible values inside the interval parameter vector a'.
This infinite number of dynamical responses constitutes a bounded response set

r= {x(a, 1) : M(a)i(a, 1) + Cla)i(a,t) + K(a)x(a, 1) = F(a,1),a € af} (5)

In general, the set I' has a very complicated region.

In interval mathematics (Moore, 1979; Alefeld and Herzberger, 1983), solving the dynamical response
problem (3) subject to (4) is synonymous to finding a multi-dimensional rectangle or interval vector con-
taining dynamical response set (5) for the interval structural parameter vector. In other words, we seek the
upper and lower bounds (or interval dynamical response vector) on the dynamical response set (5), i.e.

x[(a7 t) = [)ﬁ(m t)ﬂ?(a’ t)] = (xz{(av t)) (63')
or component form

a0 = (@05 n], i=12....n (6)
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where x(a,t) = (x;(a,t)) and x(a,t) = (x;(a,t)), and

%(a,t) = max {x(a, £): x(a,1) € R, M(a)i(a, ) + Cla)k(a, 1) + K(a)x(a, 1) = Fla,1),a af} (7)
and

%(a,t) = min {x(a, 1) : x(a,f) € R",M(a)i(a,t) + C(a)i(a,t) + K(a)x(a,t) = F(a,t),a € af} (8)

In the sequel, our aim is to determine the upper and lower bounds of the interval dynamical response.

3. Interval analysis method

In this section, we will calculate the interval dynamical response vector of structures with uncertain-
but-bounded parameters making use of interval mathematics.

By means of Eq. (4), we may define the nominal value vector or midpoint vector (Moore, 1979; Alefeld
and Herzberger, 1983) of the interval structural parameter vector as

. . a-+a X a;, + a; .
a‘:(al?):m(al):( —;_), alf':m(af):%, i=12...,m 9)

and the deviation amplitude vector or the uncertain radius vector of the interval structural parameter vector
as

@-a) @—a)
= Aag; =rad(d) =2,
2 ( l) 2

Thus, based on interval mathematics, the interval structural parameter vector is decomposed into the

sum of the nominal value vector and the deviation vector, i.€.
d =[a,a) = [a° — Aa,a" + Ad] = [a°,a‘] + [~Aa,Aa] = a° + Ad' = a° + Aa[—1,1] = a + Aaey,  (11)

where @ = a° + Aa, a = a° — Aa, Aa' = [—Aa, Ad], ey = [—1,1].
In terms of the expression (11), the interval structural parameter vector may be written in the following
form:

Aa = (Ag;) = rad(d') = i=1,2,...,m (10)

a=4d" +0da, |da]<Aa (12a)
or component form
a; =da; +0a;, |da;|<Aa;, i=1,2,...,m (12b)
Using Taylor series the dynamical response x;(a,t), i = 1,2,...,n about a° is developed as
xi(a,t) = x;(a° + 8, 1) :xi(a”,t)Jr; a""é:’t)aaj (13)
in which
8a; € Ad} = [-Aaj, Aaj], j=1,2,...,m (14)

By making use of the interval extension in interval mathematics, from the expression (13), we can obtain
the interval extension of the dynamical response of structures

Ox;(a“, 1)
aaj

xf(avt) = xi(ac>t) + zm:

J=1

Ad' (15)

J
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After the interval operations, from the above equation, we have

< a i C7t
)_Ci(a,t)ZXi(ac,t)+Z % Aaj, = 1,2,...71/1 (16)
=1 i
and
m 6 X c
x;(a,t) = x;(a,t) — Z % Aa;, i=1,2,....n (17)
=1 i

By Egs. (16) and (17) we can determine the interval region of the dynamical response of structures with
uncertain-but-bounded parameters using the interval analysis method. Obviously, if the approximation of
Taylor series extension is omitted, according to the meaning of interval mathematics, the probability of the
dynamical response of structures with uncertain-but-bounded parameters belonging to the interval region
of the dynamical response is equal to unity.

4. Determining the first derivative of the dynamical response

Recall that the mass matrix M (a), the damping matrix C(a) and the stiffness matrix K (a) are symmetric.
Assume that all elements in M(a), C(a), K(a) and all components in F(a,t) are continuously differentiable
with respect to the structural parameter a. The implicit function theorem thus guarantees that the dy-
namical response or solution x(¢) = x(a, ¢) of Eq. (3) is also continuously differentiable.

Differentiating both sides of Eq. (3) with respect to a yields

0¥(a,t) 0x(a, 1) Ox(a, 1)

M(a) % +C(a)T+K(a)T:R(a,I) (18)
where
_0F(a,t) oM(a) . C(a) 0K (a)
R(a,t) = » > ¥(ayt) % x(a,t) » x(a,t) (19)
Substitution of a = a¢ into Eq. (18) leads to the following equation:
N PN ) BN ) B
in which
o _OF(@.) M@)o 0C() . OK(@) .
R(a%t) = P X(a,t) —Tx(a ,1) —a—ax(a ) (21)

In finite element analysis, the ith element mass matrix is denoted as M;(a), the ith element damping
matrix as C;(a), the ith element stiffness matrix as K;(a), and the ith element nodal loads as f;(a, ¢). After
mass, damping, stiffness and nodal loads for all the nodes of the element have been transformed to global
directions, with the direct stiffness method, the global mass matrix M(a), the global damping matrix C(a),
the global stiffness matrix K(a) and nodal load vectors F(a,t) are obtained by summing the element mass
matrices, the element damping matrices, the element stiffness matrices and the nodal loads over all NE
elements in the structure, to obtain

M(a) = ZMi(a), Cla) = Z Ci(a),  K(a) = ZKt(a), Fla,1) = ZJ’](M) (22)
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Using Eq. (22) the first derivative required in Eq. (20) may be written as the sum of derivatives of element
matrices as

0K (a 0 [ & V. OK;(a OF (a, JED (a,
0 ($g) §E e ot

The practicality of this computation follows from at least in two cases: (1) for each element mass matrix,
each element damping matrix, each element stiffness matrix and each nodal external load vector, the
matrices M;(a), Ci(a), K;(a) and the vector f;(a,t) will depend on only a small number of structural pa-
rameters that are associated with the given element and its nodes. Thus, only a few terms in the sum of
Egs. (23) will be different from zero. (2) Evaluation of derivatives of the element bilinear forms in Egs. (23)
requires calculation of only a moderate number of terms. There are important practical considerations in
adapting programmes for computation of derivatives that are required in structural sensitivity analysis.

Another practical consideration that should not be overlooked involves calculating derivatives of the
element mass matrices, the element mass matrices, the element damping matrices, the element stiffness
matrices and the element nodal load vectors that are implicitly generated. Many modern finite element
formulations carry out numerical integration to evaluate the element mass matrices, the element damping
matrices, the element stiffness matrices and the element nodal load vectors, rather than using closed from
expressions in terms of structural parameters. For implicitly generated the element mass matrices, the el-
ement damping matrices, the element stiffness matrices and the element nodal load vectors, the differen-
tiation can be carried through the sequence of calculations used to generate the element mass matrices,
the element damping matrices, the element stiffness matrices and the element nodal load vectors, thus
leading to implicit first derivative routines. An alternative approach is simply to perturb one structural
parameter at a time and use finite difference to approximate element matrix and component vector
derivative. For example

OM;(a) _Mi(a+ da) — M;(a) 0Ci(a) _ Ci(a+ da) — Ci(a)

Oa da ’ da da (24a)

0Ki(a) _ Kila+ da) — Ki(a) 0fia,1)  fila+da,1) — fi(a,1)

da da ’ da da

where da is a small perturbation in the structural parameter a.

(24b)

5. Probabilistic approach

In this section, we will determine the interval dynamical response of structures with uncertain-but-
bounded parameters by probabilistic approach.

Assume that the m-dimensional uncertain structural parameter vector a = (a;) is random variable
(Elishakoff, 1983). Thus, the dynamical response x(a, ¢) is also random. If we denote the random structural
parameter vector’s expected value, or the mean value (MV), as

E(a) = (E(a) = a" = (a7) (25)

1

then Eq. (13) can be interpreted as a Taylor’s series expansion of the random dynamical response about the
mean value x;(af,¢), i = 1,2,...,n of the random structural parameter vector a = (a;).
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For the random structural parameter vector a = (a;), the variance is defined by
Var(a) = (Var(a)) = D(a) = (D(a)) (26)
Then the standard deviation of the random structural parameter vector a = (q;) is defined as
a(a) = (o(a;)) = /Var(a) = /D(a) = (Var(a,) = (v/D(a,)) (27)

The mean value or expected value of the dynamical response is obtained by taking the expected value of
both side of Eq. (13). In so doing, it follows that

m E
E{xi(a,1)} =E{x,-(a"5,t)}+E<; %aj’t)éi > =x(a +Z ax’aaj’ a;—at), o8)
i=1,2,...,n
and nothing that the term E(8a,) = E(a; — a}) is zero, we obtain
E{xi(a,t)} = x;(a" 1), i=1,2,....n (29)

For the variance of the dynamical response x;(a,¢) we obtain in a similar way as follows:

Var(u(a, 1)) = D(sla, 1) = 3 (%#) 1+ Y ax,az 1) 6’“6‘; D Cov(apa)  (30)

=1 k=1 =1 k

where Cov(ay, a,) is the covariance of the random structural parameter variables and is defined as
Cov(xi, x;) = El(xi(a, 1) — Elxi(a,1)]) (xi(a, 1) — Elx,(a,1)])] (31)

When the random structural parameter variables are independent, the variance of the dynamical re-
sponse can be reduced as

Var(x;(a, 1)) = D(x:(a, 1)) = Z (M>20(aj) = Em: (Ma(ai)>2

= aaj = aaj

=3 (e ) (32)

J=1

Obviously, the standard deviation of the dynamical response x;(a, t) is

o((a,1)) = /Dl (a. 1) = J > (Ha) (33)

J=1

Thus, let £ be a positive integer, the probabilistic region of & times standard deviations of its mean value of
the random dynamical response is

V= v.(a,0),y(a,n)] = [xi(a”, 1) — ko(xi(a,t),x:(a", t) + ka(x(a,0)], i=1,2,....n (34)

where the probabilistic upper bound is

m ai E 2
(%0_,«), i=1,2,....n (35)
1 J

Jj=

yi(a,t) = xi(a®,t) + ka(xi(a,t) = x,(a", t) + k$
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and the probabilistic lower bound is

v (a,t) = xi(af, 1) — ka(x;(a,t) = x,(a",t) — k i (Mq) , i=12...n (36)

2 .
j=1 aa}

By Egs. (35) and (36) we can obtain the probabilistic region of the dynamical response of structures with
uncertain-but-bounded parameters using the probabilistic approach. According to the Tchebycheff’s in-
equality, we know that the probability of the random variable with finite variance falling within & standard
deviations of its mean is at least 1 — 1/k%, and the bound is independent of the distribution of the random
variable, provided it has a finite variance. For sufficient large &, in the numerical example, when using the
probabilistic approach to estimate the upper and lower bound of structural response, the value of & times
standard deviations in Egs. (35) and (36) will result in almost a certain event.

6. Comparison of non-probabilistic interval analysis method and probabilistic approach

For convenience of comparison, we first prove the following inequality.
For any real m-tuples a; > 0,1,2,...,m, then the following inequality holds:

m m

Z a; = Z a? (37)

Proof. Adding Y7, @* to the both sides of the following inequality:

i=1"i

22(1[61] = 0 (38)

to arrive at

m

iaf—&—Ziaidi = a? (39)
i=1

ij=1 i=1
i#j

arranging the above inequality to produce

(Z a,-> > Zm: a; (40)

taking the square of the inequality to yield

m m

daz= > & O (41)

i=1 i=1

Assume that we obtain the interval regions of the uncertain-but-bounded structural parameters based on
the probabilistic statistical information or stochastic sample test and they can be expressed as the following
interval vector form:

d =a,a) = (a) = [a* — ko,d" + ko] (42)

1

and its component form

a =la,a) = [af—kai,af—i—ka,«], i=1,2,...,m (43)
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wherea = (a;), a; = a¥ — ko, i=1,2,...,m,and a = (a,), a; = a* + ka;, i = 1,2,...,m, are respectively the
upper bound vector and the lower bound vector of the interval vector a' = [a,a] = (a!), the vectors
a* = (a¥) and ¢ = o(a) = (0(a;)) = (0;) are respectively the mean value and the standard deviation of the
uncertain structural parameter vector a = (g;), and k is a positive integer. According to the Tchebycheff's
inequality in probabilistic theory, we know that the probability of the uncertain structural parameter
a=(a;) with finite variance D = D(a)= (D;) = (D(a;)) falling within k& standard deviations
o = +/D = (3;) = (v/D;) of its mathematical expectation is at least 1 — 1/4%, and the bound is independent
of the distribution of the uncertain structural parameter, provided it has a finite variance. Obviously, from
(42) and (43), the nominal value vector or midpoint vector of the uncertain structural parameter vector
a = (a;) can be calculated as follows:

a = (a)=m(d)=d", o =m(d)=d, i=1,2,....m (44)

1

and the deviation amplitude vector or the uncertain radius vector of the uncertain structural parameter
vector a = (a;) can be determined

Aa = (Aa;) = rad(d') = ko, Aa; =rad(d) = ka;, i=1,2,....m (45)

Thus, in terms of the expressions (44) and (45), the interval region (16) and (17) of the structural dynamical
response can be rewritten as

" | ox;(af, ¢t
Tia, ) = xi(d" )+ % ke, i=12,...,n (46)
a4
=1 i
and
" | Ox;(af, ¢t
xa,t) =xi(d,0) = % ke, i=12,...,n (47)
a4
= J

For the sum expression

Ox;(af, 1)
6aj

m

>

=1

ko

Jo

by means of the inequality (41), we have that

o, (a® ?
( xl(a )t)ko_j>
6aj

Since the inequality (48), from Egs. (35), (36), (46) and (47), we can deduce

x;(a,1) <y(a,1) <yi(a,1) <xi(a 1) (49)

m

>

Jj=1

m

N

J=1

ox;(af, )

aaj kO'j

e [5 (E, ) )

J=1

The expression (49) means that under the condition of the interval vector of the uncertain parame-
ters determined from the probabilistic information, the width of the dynamical response obtained by
the interval analysis method is larger than that by the probabilistic approach for structures with uncertain-
but-bounded structural parameters. Namely the lower bounds within interval analysis method are smaller
than those predicted by the probabilistic approach, and the upper bounds furnished by the interval analysis
method are larger than those yielded by the probabilistic approach. This is just the results which we hope,
since according to the definition of probabilistic theory and interval mathematics, the region by determined
by the interval analysis method should contain that predicted by the probabilistic approach.
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7. Numerical examples

Example 1. Fig. 1 shows a cantilever beam with 11 nodes, 10 elements and the length of 1 m. The cross-
sectional area of the beam is 4 = 2.0E — 4 m?. The moment of inertia of the cross-section of the beam is
L =20E —8 m* The Poisson’s ratio is u = 0.3. Now there is a harmonic sinusoidal excitation
P(t) = —psin(16007¢)N acting on the vertical direction of the node 3 with the initial condition x(0) = 0 and
x(0) = 0. Assume that, because of uncertainties, the Young’s modulus, the mass density and the harmonic
sinusoidal excitation amplitude of the cantilever beam are uncertain-but-bounded parameters, and their
interval numbers are: £/ = [194 x 107,206 x 10°] N/m?, p! = [97,103] kg/m?® and p/ = [97,103] N. We also
assume that the Young’s modulus, the mass density and the harmonic sinusoidal excitation amplitude of
the cantilever beam have all normal or Gaussian distributions in their interval numbers with the mean
values (MV) u; = 200 x 10° N/m?, u, = 7800 kg/m’, u, = 100 N and the standard variances oz = 6 x 10°
N/m?, 6, = 234 kg/m®, g, = 3 N. The response regions of the fifth node in vertical direction on the can-
tilever beam are, respectively, computed by the interval analysis method and the probabilistic approach,
and plotted in the Figs. 2 and 3. The comparison of the response region curves of the cantilever beam by the
interval analysis method and the probabilistic approach is also presented in Fig. 4.

Example II. Considering a plane truss subjected to a harmonic sinusoidal excitation P(¢) = — sin(20ms)N

with the initial condition x(0) = 0 and x(0) = 0, as shown in Fig. 5. The truss is partitioned into 6 nodes and
8 elements. Assume that the cross-sectional area of elements ®, @, ® and @ are 4; = A4, = A3 = A, =

P(t)=—p*sin(1600*pi*t)

1

1 I 1 T I I I I I I ]
g il 2 3 4 E 6 7 8 9 10 11
| |
| L |

Fig. 1. A cantilever beam.
X 10-7(m)
25 T T :
—— Mean value -~

21| — - Interval lower bound / . b
---- Interval upper bound

Y Displacement of Node 5

0 0.2 0.4 0.6 0.8 1 1.2
Time(s) x10°

Fig. 2. Response region curves of the cantilever beam by the interval analysis method.
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x10” (M)
25 T T T T T .
— Mean value
2| — - Probabilistic lower bound -7 8
15 ---- Probabilistic upper bound

[y

o
3]

o
(6]

Y Displacement of Node 5
[N o

-1.5

0 0.2 0.4 0.6 0.8 1 1.2

Time(s) x10°

Fig. 3. Response region curves of the cantilever beam by the probabilistic approach.

-7
25 x 10 (m) ‘ ‘ ‘ ‘ ‘ ‘
—— Mean value
21| — - Interval lower bound
—— Interval upper bound
1.5[| ---- Probabilistic lower bound
— - - Probabilistic upper bound

Y Displacement of Node 5

0.2 0.4 0.6 0.8 1 12

Time(s) x10°

Fig. 4. Comparison of the response region curves of the cantilever beam by the interval analysis method and the probabilistic ap-
proach.

1.0 x 10~* m?, those for elements ®, ®, @ and ® are As = A¢ = A7 = As = 1.2 x 10~* m>. The Poisson’s
ratio is u = 0.3. We assume that the Young’s modulus, the mass density and the harmonic sinusoidal ex-
citation amplitude of the plane truss are uncertain-but-bounded parameters, and their interval numbers are:
E' =190 x 10°,210 x 10°] N/m?, p’ = [7410,8190] kg/m* and p’ = [95,105] N. We also assume that the
Young’s modulus, the mass density and the harmonic sinusoidal excitation amplitude of the plane truss
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Fig. 6. Response region curves of the truss by the interval analysis method.

have all normal or Gaussian distributions in their interval numbers with the mean values (MV)
pg = 200 x 10° N/m?, u, = 7800 kg/m?, u, =100 N and the standard variances oz = 10 x 10° N/m?,
o, =390 kg/m?, 6, = 5 N. The response regions of the third node in vertical direction on the plane truss
are, respectively, computed by the interval analysis method and the probabilistic approach, and plotted in
the Figs. 6 and 7. The comparison of the response region curves of the plane truss by the interval analysis
method and the probabilistic approach is also presented in Fig. 8.

From the above numerical examples, we can see that the region of the dynamical response of structures
with uncertain-but-bounded parameters obtained by the interval analysis method contains that produced
by the probabilistic approach. In other words, it is seen that the present interval analysis method yields
larger bounds; namely, the lower bounds within the present interval analysis method are smaller than those
predicted by the probabilistic approach. Likewise, the upper bounds furnished by the present interval
analysis method are larger than those yielded by the probabilistic approach. This kind of results is coin-
cident with the meaning of the probabilistic theory and interval mathematics.
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Fig. 8. Comparison of the response region curves of the truss by the interval analysis method and the probabilistic approach.

8. Conclusions

In this study we considered the dynamical response of structures with uncertain parameters. Instead of
assuming extensive knowledge of the probabilistic characteristics of the uncertain parameters, we adopted a
non-probabilistic, set-theoretic approach to model uncertainty in the structural parameters. In particular,
we assumed that the structural parameters are uncertain-but-bounded. By finite element analysis and in-
terval mathematics, the non-probabilistic interval analysis method for structural dynamical response is
developed. Under the condition of the box or interval vector, which contains the uncertain-but-bounded
parameters, determined from the probabilistic statistical information or stochastic sample test, we can also
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show that the width of the upper and lower bounds on the structural dynamical response yielded by the
probabilistic approach is tighter than those produced by the non-probabilistic interval analysis method in
the mathematical proof and the numerical examples. This kind of results is coincident with the meaning of
the probabilistic theory and interval mathematics.
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Appendix A. Determination of interval parameters based on the probabilistic statistical information

In some cases, we can obtain probabilistic statistical properties of the uncertain variables by measure-
ments or past experience. In these cases, on the one hand, the uncertain variable should be treated as
random field, on the other hand, we can determine the interval region in which the uncertain variable is
varying based on these probabilistic statistical information. Before discussing some important theoretical
results, we will introduce two characteristics associated with an uncertain distribution. Generally, a char-
acteristic associated with an uncertain distribution is called a parameter. A parameter is defined to be a
numerical value associated with a theoretical uncertain distribution. The two parameter we consider here
are the mean value and the variance (Elishakoff, 1983; Robert et al., 1975), the former being a measure of
location and the latter a measure of variation of the uncertain random variable. Since the theoretical
uncertain probability distribution gives a complete description of the corresponding uncertain random
variable, we will call the two parameters the mean value and the variance of the random variable or
equivalently, of the probability distribution. The two parameters of a probability distribution, be it discrete
or continuous, will be denoted by letters u and D.

Suppose a random variable X can take on the values of a finite discrete set {x,xs,...,x,} according to
the probability function f(x). The mean value, denoted by u, of the discrete random variable is defined by
p=EX)=> xf(x) (A1)

=1

It should be noted the mean value in the above expression is the usual weighted arithmetic average of
X1,X2,- - -,%,. The probability function in most cases is theoretical, which is not known in general. We also
say the mean value is the mathematical expectation or the expected valued of the discrete random variable
X.

The second parameter of interest is the variance of the discrete random variable X, denoted by D. The
variance of the discrete random variable X is defined by

2 . 2
D= El(X = 1)) = D5 — 1)’ () (42)
i=1
The variance of the discrete random variable X is simply the weighted average of
(x1 — p)%, (k2 — )%, ..., (x, — 1), with respect to the weights £ (x;), /(x2), - - ., f (x,). Obviously, the variance
of the discrete random variable X is also the expected value of (X — p)’.
The mean value p and the variance D of a continuous random variable X are given by

u=B0n) = [ aar (A3)

o0
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and

D=0~ ) = [ (- sy (A4)
The positive square root of the variance D is called the standard deviation of the uncertain random X and is
denoted by ¢ = v/D.

The parameters u and D are referred to as the population mean value and the variance, respectively.
They are generally unknown and information about them, in the form of inferences, is obtained by con-
sidering a sample from the appropriate population. This leads to the sample analogues of u and D, which
are called the sample mean value and the sample variance.

The sample mean value, which is the most important and often used in statistics, is defined by the sum of
all the sample values divided by the number of observations in the sample and is denoted by

Xi
U, = . (A.5)

i=1

where g, is the mean value of n values and x; is any given value in the sample. It is an estimate of the value of
the mean value of the population from which the sample was drawn. The sample mean-value is used as a
measure of location is one that indicates where the center of the data is located.

Having determined the location of the data as expressed by statistics such as the mean value, the next
thing to be considered is how the data are spread about these mean values. The most popular method of
reporting variability is by use of the sample variance defined by

1 " 1 !
S e ] A6
=13 O

The sample variance is the sum of the squares of the deviations of the data points from the mean value of
the sample divided by n — 1.

The standard deviation of a sample, denoted by g, is defined to be the positive square root of the sample
variance, that is o, = v/D;.

Let X be a random variable with a finite variance o3 and the mean value E(X). Then the following
probabilistic inequality is valid, provided £ is a positive integer

1
P(|X —EX)| = kox) < 2 (A7)
This inequality, named after Tchebycheff’s inequality, signifies that
P(JX —EX)| < kay) > 1 (A.8)

R
From the Tchebycheff’s inequality, we know that the probability of the random variable X with finite

variance oy falling within k standard deviations of its mean is at least 1 — 1/k*. For example, for k = 2 we
obtain

P(E(X) —20x <X <E(X)+20x) >2=0.75 (A.9)
for any random variable X with finite variance. For £ = 3
P(E(X) —30y <X < E(X) + 30y) > 5=10.8889 (A.10)

For any random variable X with finite variance, the latter inequality signifies that the probability of X
falling within three standard deviations of its mean value is at least 0.8889. This bound is independent of the
distribution of X, provided that it has a finite variance o%. Obviously, as k increases, the probability of the
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uncertain variable falling within the interval [E(X) — koy,E(X) 4 koy] approach unity, that is to say
X € [E(X) —kox,E(X) + kay] is almost a certain event as k increases. For example, when & = 10 we have

P(E(X) — 100y < X < E(X) 4 100y) > 2 = 0.99 (A.11)

for any random variable X with finite variance a7 .

Thus, if given the mean value £(X) and the finite variance o3 of an uncertain variable X, we may take
[E(X) — kox,E(X) + kaoy], where k is sufficent large, as the interval number or vector in which the uncertain
variable X is varying.
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